Certificate No: EC4D0807

CERTIFICATE OF COMPLIANCE

EQUIPMENT MODEL NO. APPLICANT

: 3.5" External HDD enclosure : i310-SB3, GT1670-SB3, GT1660-SB3

: RAIDON TECHNOLOGY, INC. 7F-9, No.16, Lane 609, Sec. 5, Chung-Hsin Rd., San-Chung Dist., New Taipei City, Taiwan (R.O.C)

CERTIFY THAT:

THE MEASUREMENTS SHOWN IN THIS TEST REPORT WERE MADE IN ACCORDANCE WITH THE PROCEDURES GIVEN IN **DIRECTIVE 2004/108/EC**. THE EQUIPMENT WAS **PASSED** THE TEST PERFORMED ACCORDING TO European Standard EN 55022:2010/AC:2011 Class B,

EN 61000-3-2:2006/A1:2009 and /A2:2009, 61000-3-3:2008 and EN 55024:2010 (IEC 61000-4-2 Edition 2.0 2008-12, IEC 61000-4-3 Edition 3.2 2010-04, IEC 61000-4-4 Edition 3.0 2012-04, IEC 61000-4-5 Edition 2.0 2005-11, IEC 61000-4-6 Edition 3.0 2008-10, IEC 61000-4-8 Edition 2.0 2009-09, IEC 61000-4-11 Edition 2.0 2004-03).

THE TEST WAS CARRIED OUT ON Dec. 18, 2014 AT SPORTON INTERNATIONAL INC. LAB.

Jack Deng

Engineering Manager

According to

European Standard EN 55022:2010/AC:2011 Class B EN61000-3-2:2006/A1:2009 and /A2:2009 EN 61000-3-3:2008 and EN 55024:2010 (IEC 61000-4-2 Edition 2.0 2008-12 IEC 61000-4-3 Edition 3.2 2010-04, IEC 61000-4-4 Edition 3.0 2012-04 IEC 61000-4-5 Edition 2.0 2005-11, IEC 61000-4-6 Edition 3.0 2008-10 IEC 61000-4-8 Edition 2.0 2009-09, IEC 61000-4-11 Edition 2.0 2004-03)

Equipment : 3.5" External HDD enclosure

Model No. : i310-SB3, GT1670-SB3, GT1660-SB3

Applicant : **RAIDON TECHNOLOGY, INC.**

7F-9, No.16, Lane 609, Sec. 5, Chung-Hsin Rd., San-Chung Dist., New Taipei City, Taiwan (R.O.C)

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- This test report is only applicable to European Community.

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

History of this test report	iii
CERTIFICATE OF COMPLIANCE	1
 General Description of Equipment under Test. 1.1 Applicant. 1.2 Manufacturer 1.3 Basic Description of Equipment under Test. 1.4 Feature of Equipment under Test 	
 2. Test Configuration of Equipment under Test 2.1 Test Manner 2.2 Description of Test System 2.3 Connection Diagram of Test System for Radiated Emission 3. Test Software 	
 4. General Information of Test. 4.1 Test Facility 4.2 Test Voltage 4.3 Standard for Methods of Measurement. 4.4 Test in Compliance with 4.5 Frequency Range Investigated 4.6 Test Distance 	
 5. Test of Conducted Powerline 5.1 Test Procedures 5.2 Typical Test Setup Layout of Conducted Powerline 5.3 Test Result of AC Powerline Conducted Emission 5.4 Photographs of Conducted Power line Test Configuration 	
 6. Test of Radiated Emission. 6.1 Test Procedures. 6.2 Typical Test Setup Layout of Radiated Emission. 6.3 Test Result of Radiated Emission (Below 1GHz). 6.4 Photographs of Radiated Emission (Below 1GHz) Test Configuration	
7. Harmonics Test	26 26 26 26 26 26 26
 8. Voltage Fluctuations Test	28 28 28 28 28 28 29 30
9. Electrostatic Discharge Immunity Test (ESD) 9.1 Test Setup SPORTON International Inc. Pa	

TEL : 886-3-327-3456 FAX : 886-3-327-0973 Issued Date : Dec. 24, 2014 Report Version : Rev. 01

Report No. : EC4D0807

9.2 Test Setup for Tests Performed in Laboratory	
9.3 ESD Test Procedure	
9.4 Test Severity Levels	
9.5 Test Points	
9.6 Photographs of Test Points	35
9.7 Photographs of Electrostatic Discharge Immunity Test	
10. Radio Frequency Electromagnetic Field Immunity Test (RS)	39
10.1 Test Setup	
10.2 Test Procedure	
10.3 Test Severity Levels	-
10.4 Photographs of Radio Frequency Electromagnetic Field Immunity Test	
11. Electrical Fast Transient/Burst Immunity Test (EFT/BURST)	
11.1 Test Setup	
11.2 Test on Power Line	
11.3 Test on Communication Lines	-
11.4 Test Procedure	-
11.5 Test Severity Levels	-
11.6 Photographs of Electrical Fast Transient/Burst Immunity Test	
12. Surge Immunity Test	
12.1 Test Record	-
12.2 Test Level	-
12.3 Test Procedure	
12.4 Operating Condition	
12.5 Photographs of Surge Immunity Test	
13. Conducted Disturbances Induced by Radio-Frequency Field Immunity Test (CS)	
13.1 Test Level	
13.2 Test Procedure	
13.3 Photographs of CS Immunity Test	52
13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests	53
13.3 Photographs of CS Immunity Test	53
13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup	53 53 53
13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record	53 53 53
13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup	53 53 53 54
13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests	53 53 53 54 55
13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests 15. Voltage Dips and Voltage Interruption Immunity Tests	
 13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests 15. Voltage Dips and Voltage Interruption Immunity Tests 15.1 Test Record of Voltage Interruption 	
 13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests 15. Voltage Dips and Voltage Interruption Immunity Tests 15.1 Test Record of Voltage Interruption 15.2 Test Record of Voltage Dips 15.3 Testing Requirement and Procedure 15.4 Test Conditions 	
 13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests 15. Voltage Dips and Voltage Interruption Immunity Tests 15.1 Test Record of Voltage Interruption 15.2 Test Record of Voltage Dips 15.3 Testing Requirement and Procedure 15.4 Test Conditions 15.5 Operating Condition 	
 13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests 15. Voltage Dips and Voltage Interruption Immunity Tests 15.1 Test Record of Voltage Interruption 15.2 Test Record of Voltage Dips 15.3 Testing Requirement and Procedure 15.4 Test Conditions 	
 13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests 15. Voltage Dips and Voltage Interruption Immunity Tests 15.1 Test Record of Voltage Interruption 15.2 Test Record of Voltage Dips 15.3 Testing Requirement and Procedure 15.4 Test Conditions 15.5 Operating Condition 	53 53 54 55 55 55 55 55 55
13.3 Photographs of CS Immunity Test 14. Power Frequency Magnetic Field Immunity Tests 14.1 Test Record 14.2 Test Setup 14.3 Photographs of Power Frequency Magnetic Field Immunity Tests 15. Voltage Dips and Voltage Interruption Immunity Tests 15.1 Test Record of Voltage Interruption 15.2 Test Record of Voltage Interruption 15.3 Testing Requirement and Procedure 15.4 Test Conditions 15.5 Operating Condition 15.6 Photographs of Voltage Dips and Voltage Interruption Immunity Tests	

History of this test report

Original Report Issue Date: Dec. 24, 2014

No additional attachment.

Additional attachments were issued as in the following record:

Report No.	Version	Issue Date	Description
EC4D0807	Rev. 01	Dec. 24, 2014	Original Report

Certificate No. : EC4D0807

CERTIFICATE OF COMPLIANCE

According to

European Standard EN 55022:2010/AC:2011 Class B EN61000-3-2:2006/A1:2009 and /A2:2009, EN 61000-3-3:2008 and EN 55024:2010 (IEC 61000-4-2 Edition 2.0 2008-12, IEC 61000-4-3 Edition 3.2 2010-04, IEC 61000-4-4 Edition 3.0 2012-04, IEC 61000-4-5 Edition 2.0 2005-11, IEC 61000-4-6 Edition 3.0 2008-10, IEC 61000-4-8 Edition 2.0 2009-09, IEC 61000-4-11 Edition 2.0 2004-03)

Equipment : 3.5" External HDD enclosure

Model No. : i310-SB3, GT1670-SB3, GT1660-SB3

Applicant : RAIDON TECHNOLOGY, INC. 7F-9, No.16, Lane 609, Sec. 5, Chung-Hsin Rd., San-Chung Dist., New Taipei City, Taiwan (R.O.C)

I HEREBY CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **EUROPEAN COUNCIL DIRECTIVE 2004/108/EC.** The equipment was **passed** the test performed according to **European Standard EN 55022:2010/AC:2011 Class B**,

EN61000-3-2:2006/A1:2009 and A2:2009, EN 61000-3-3:2008 and EN 55024:2010 (IEC 61000-4-2 Edition 2.0 2008-12, IEC 61000-4-3 Edition 3.2 2010-04, IEC 61000-4-4 Edition 3.0 2012-04, IEC 61000-4-5 Edition 2.0 2005-11, IEC 61000-4-6 Edition 3.0 2008-10, IEC 61000-4-8 Edition 2.0 2009-09, IEC 61000-4-11 Edition 2.0 2004-03)

The product sample received on **Dec. 05, 2014** and completely tested on **Dec. 18, 2014** at **SPORTON International Inc. LAB.**

Jack Deng

Engineering Manager

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

1. General Description of Equipment under Test

1.1 Applicant

RAIDON TECHNOLOGY, INC.

7F-9, No.16, Lane 609, Sec. 5, Chung-Hsin Rd., San-Chung Dist., New Taipei City, Taiwan (R.O.C)

1.2 Manufacturer

Same as 1.1

1.3 Basic Description of Equipment under Test

:	3.5" External HDD enclosure
:	i310-SB3, GT1670-SB3, GT1660-SB3
:	RAIDON
:	D-Shielded, 1.0m
:	D-Shielded, 1.05m
:	Switching
:	Non-Shielded, 1.85m, 2pin
:	Non-Shielded, 1.85m
	: : : :

1.4 Feature of Equipment under Test

Туре	Spec.
	Model No. : UIA324-12
Adapter	Input: 100-240V 50/60Hz 0.6A
	Output: 12V===2A

Please refer to user manual.

2. Test Configuration of Equipment under Test

2.1 Test Manner

- a. During testing, the interface cables and equipment positions were varied according to European Standard EN 55022.
- b. The complete test system included PC, LCD Monitor, USB Keyboard, USB Mouse, Printer, Modem, HDD and EUT for EMI test.
- c. The following test modes were pretested for conducted test:

Mode 1. i310-SB3, USB 3.0 R/W Mode 2. i310-SB3, E-SATA R/W Mode 3. GT1670-SB3, USB 3.0 R/W Mode 4. GT1660-SB3, USB 3.0 R/W ⇔ Cause **"Mode 1"** generated the w

⇒ Cause "Mode 1" generated the worst test result; it was reported as final data.
 d. The following test modes were pretested for radiated test:

Mode 1. i310-SB3, USB 3.0 R/W Mode 2. i310-SB3, E-SATA R/W Mode 3. GT1670-SB3, USB 3.0 R/W Mode 4. GT1660-SB3, USB 3.0 R/W

- ⇒ Cause **"Mode 1"** generated the worst test result; it was reported as final data.
- e. The following test mode was referring to radiated pretested worst case "Mode 1" for radiated (5th harmonic of the highest frequency or 6 GHz) final test:

Mode 1. i310-SB3, USB 3.0 R/W

- f. The complete test system included PC, LCD Monitor, USB Keyboard, USB Mouse and EUT for Harmonic, Flicker and EMS test.
- g. The following test mode was for Harmonic, Flicker and EMS final test:

Mode 1. i310-SB3, USB 3.0 R/W

h. The following test mode was for Harmonic, Flicker and EMS final test:

Mode 1. i310-SB3, USB 3.0 R/W

i. Frequency range investigated: Conducted 150 kHz to 30 MHz, Radiated 30 MHz to 6,000 MHz.

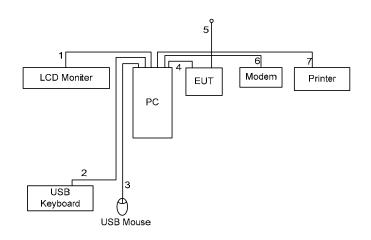
2.2 Description of Test System

< EMI >

For conducted emission and radiated emission below 1GHz

No.	Description	Manufacturer	Model	Signal Cable Description
1	PC	Lenovo	C61	
2	LCD Monitor	DELL	E198WFPF	D-SUB Cable, D-Shielded, 1.8m
3	USB Keyboard	Lenovo	KU-0225	USB Cable, AL-F-Shielded, 1.8m
4	USB Mouse	Lenovo	M-U0025-O	USB Cable, AL-F-Shielded, 1.8m
5	Printer	HP	C2642A	LPT Cable, D-Shielded, 1.2m
6	Modem	ACEEX	DM1414	RS-232 Cable, D-Shielded, 1.15m
7	HDD (Inserted into EUT)	Seagate	250G	

For radiated emission above 1GHz


No.	Description	Manufacturer	Model	Signal Cable Description
1	PC	DELL	DCTA	
2	LCD Monitor	DELL	U2410f	D-SUB Cable, D-Shielded, 1.8m
3	USB Keyboard	DELL	SK-8175	USB Cable, AL-F-Shielded, 1.8m
4	USB Mouse	DELL	MOC5UO	USB Cable, AL-F-Shielded, 1.8m
5	Printer	HP	C2642A	LPT Cable, D-Shielded, 1.2m
6	Modem	ACEEX	DM1414	RS-232 Cable, D-Shielded, 1.15m
7	HDD (Inserted into EUT)	Seagate	250G	

< EMS >

No.	Description	Manufacturer	Model	Signal Cable Description
1	PC	DELL	470	
2	LCD Monitor	View Sonic	VS15032	D-SUB Cable, Shielded, 1.8m
.3	USB Keyboard	DELL	KB113t	USB Cable, AL-F-Shielded, 2.0m
4	USB Mouse	DELL	MS111-P	USB Cable, AL-F-Shielded, 1.8m

CE *emc test report*

2.3 Connection Diagram of Test System for Radiated Emission

The support unit 7 is insert into EUT.

- 1. The D- SUB cable is connected from support unit 1 to the support unit 2.
- 2. The USB cable is connected from support unit 1 to the support unit 3.
- 3. The USB cable is connected from support unit 1 to the support unit 4.
- 4. The USB cable is connected from EUT to the support unit 1.
- 5. The ESATA cable is floating from EUT.
- 6. The RS232 cable is connected from support unit 1 to the support unit 6.
- 7. The LPT cable is connected from support unit 1 to the support unit 5.

Note: Above support unit on behalf of the meaning, please refer to section 2.2. (EMI part)

3. Test Software

< EMI >

An executive program, "Burn In Test" under Win 7, which generates a complete line of continuously repeating "H " pattern was used as the test software.

The program was executed as follows :

- a. Turn on the power of all equipment.
- b. The PC sends "H " messages to the monitor, and the monitor displays "H " patterns on the screen.
- c. The PC sends "H " messages to the printer, then the printer prints them on the paper.
- d. The PC sends "H " messages to the modem.
- e. The PC reads the test program from the keyboard and mouse and runs it.
- f. Repeat the steps from c to f.

At the same time, the following program was executed:

- Executed "EMI Program" to the printer, then the printer prints them on the paper.
- Executed "EMI program" to send signal messages via modem.
- The PC executed "WINTHRAX" to read and write the HDD of EUT via USB cable.

<EMS>

During the test, the PC executed "WINTHRAX" program under Win 7 to read and write the HDD of EUT via USB cable.

4. General Information of Test

4.1 Test Facility

No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-5551 FAX : 886-2-2631-9740
CO01-NH
elow 1GHz
No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-5551 FAX : 886-2-2631-9740
OS01-NH
oove 1GHz
No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-327-0973 03CH04-HY
No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-327-0973

4.2 Test Voltage

230V / 50Hz

4.3 Standard for Methods of Measurement

EMI Test Harmonics Test Voltage Fluctuations Test EMS Test	:	European Standard EN 55022 Class B European Standard EN 61000-3-2 European Standard EN 61000-3-3 European Standard EN 55024 (ESD: IEC 61000-4-2, RS: IEC 61000-4-3, EFT: IEC 61000-4-4, Surge: IEC 61000-4-5, CS: IEC 61000-4-6, Device Exercised Magnetic Eicld: IEC 61000-4-9
		Surge: IEC 61000-4-5, CS: IEC 61000-4-6, Power Frequency Magnetic Field: IEC 61000-4-8,
		Dips: IEC 61000-4-11)

4.4 Test in Compliance with

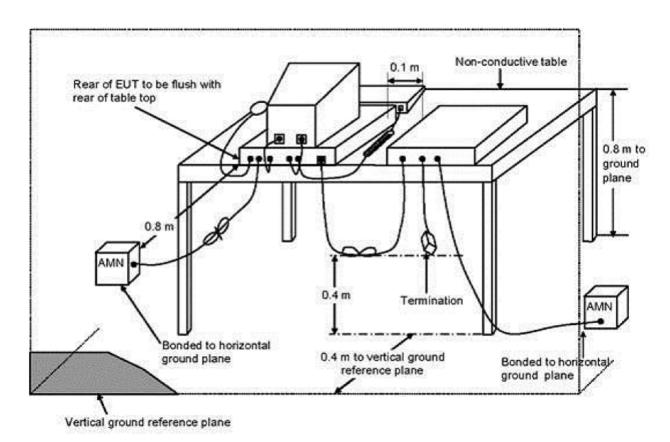
EMI Test		European Standard EN 55022 Class B
Harmonics Test	:	European Standard EN 61000-3-2
Voltage Fluctuations Test	:	European Standard EN 61000-3-3
EMS Test	:	European Standard EN 55024
		(ESD: IEC 61000-4-2, RS: IEC 61000-4-3, EFT: IEC 61000-4-4,
		Surge: IEC 61000-4-5, CS: IEC 61000-4-6,
		Power Frequency Magnetic Field: IEC 61000-4-8,
		Dips: IEC 61000-4-11)

4.5 Frequency Range Investigated

- a. Conducted emission test: from 150 kHz to 30 MHz
- b. Radiated emission test: from 30 MHz to 6,000 MHz
- c. Radio frequency electromagnetic field immunity test: 80-1000 MHz

4.6 Test Distance

- a. The test distance of radiated emission from antenna to EUT is 10 M (from 30MHz~1GHz)
- b. The test distance of radiated emission from antenna to EUT is 3 M (from 1GHz ~ 6GHz)
- c. The test distance of radio frequency electromagnetic field immunity test from antenna to EUT is 3 M


CE *emc test report*

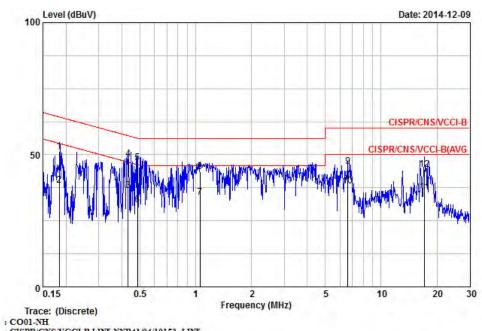
5. Test of Conducted Powerline

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 kHz and return leads of the EUT according to the methods defined in European Standard EN 55022, Clause 9. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 5.3. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position producing maximum conducted emissions.

5.1 Test Procedures

- a. The EUT was warmed up for 15 minutes before testing started.
- b. The EUT was placed on a desk 0.8 meters height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- c. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- d. All the support units are connected to the other LISN.
- e. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- f. The CISPR states that a 50 ohm, 50 microhenry LISN should be used.
- g. Both sides of AC line were checked for maximum conducted interference.
- h. The frequency range from 150 kHz to 30 MHz was searched.
- i. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

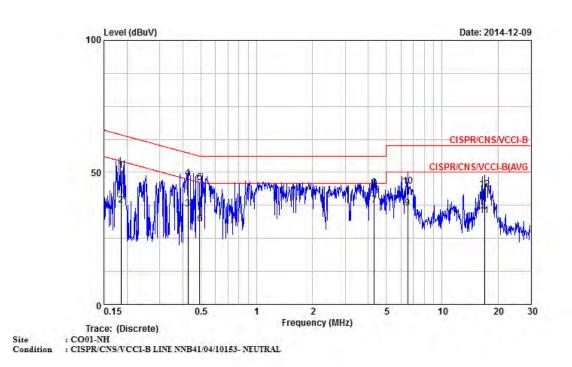
5.2 Typical Test Setup Layout of Conducted Powerline


SPORTON International Inc. TEL : 886-3-327-3456 FAX : 886-3-327-0973

5.3 Test Result of AC Powerline Conducted Emission

Test Mode	Mode 1	Temperature	22 ℃
Test Engineer	Willy Lee	Humidity	52%

Note: Corrected Reading $(dB\mu V) = LISN Factor + Cable Loss + Read Level = Level$


The test was passed at the minimum margin that marked by the frame in the following data

Site Condition

ition	: CISPR/CNS/VCCI-B LINE NNB41/04/10153- LINE	

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	<u>.</u>
1	0.184	51.34	-12.98	64.32	40.65	10.59	0.10	QP
2	0.184	38.55	-15.77	54.32	27.86	10.59	0.10	AVERAGE
3	0.433	36.36	-10.84	47.20	25.65	10.61	0.11	AVERAGE
4	0.433	48.44	-8.76	57.20	37.73	10.61	0.11	QP
5	0.486	46.95	-9.28	56.23	36.21	10.61	0.12	QP
6	0.486	31.09	-15.14	46.23	20.35	10.61	0.12	AVERAGE
7	1.054	33.91	-12.09	46.00	23.03	10.68	0.20	AVERAGE
8	1.054	43.65	-12.35	56.00	32.77	10.68	0.20	QP
9	6.627	45.72	-14.28	60.00	34.67	10.84	0.20	QP
10	6.627	38.22	-11.78	50.00	27.17	10.84	0.20	AVERAGE
11	17.199	35.79	-14.21	50.00	24.45	11.04	0.30	AVERAGE
12	17.199	44.39	-15.61	60.00	33.05	11.04	0.30	QP



	Fred	Level	Over Limit	Limit Line	Read	LISN Factor	Cable	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.185	50.68	-13.57	64.25	40.00	10.58	0.10	QP
2	0.185	37.67	-16.58	54.25	26.99	10.58	0.10	AVERAGE
3	0.426	36.05	-11.28	47.32	25.39	10.55	0.11	AVERAGE
4	0.426	47.74	-9.59	57.32	37.08	10.55	0.11	QP
4 5	0.491	46.26	-9.89	56.14	35.57	10.56	0.12	QP
6	0.491	30.59	-15.56	46.14	19.90	10.56	0.12	AVERAGE
7 0	4.315	37.63	-8.37	46.00	26.66	10.77	0.20	AVERAGE
8	4.315	44.21	-11.79	56.00	33.24	10.77	0.20	QP
9	6.523	36.36	-13.64	50.00	25.30	10.86	0.20	AVERAGE
10	6.523	44.77	-15.23	60.00	33.71	10.86	0.20	QP
11	16.928	33.68	-16.32	50.00	22.26	11.12	0.30	AVERAGE
12	16.928	43.71	-16.29	60.00	32.29	11.12	0.30	QP

5.4 Photographs of Conducted Power line Test Configuration

• The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

Page Number:13 of 64Issued Date:Dec. 24, 2014Report Version:Rev. 01

SIDE VIEW

CE *emc test report*

6. Test of Radiated Emission

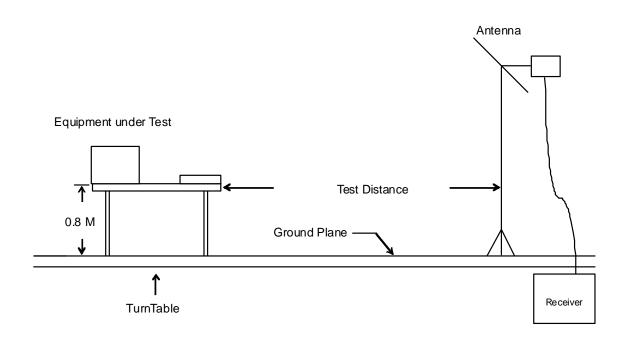
Radiated emissions below 1 GHz were measured with a bandwidth of 120 kHz for 30 MHz to 1,000 MHz, according to the methods defines in European Standard EN 55022, Clause 10. The EUT was placed on a nonmetallic stand, 0.8 meter above the ground plane, as shown in section 6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.

6.1 Test Procedures

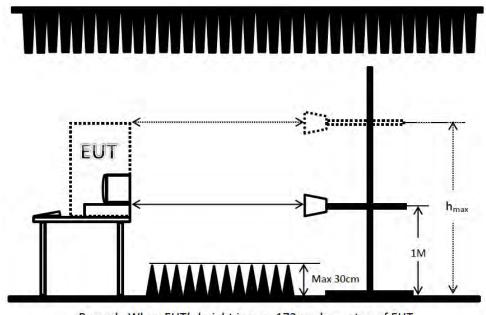
< Below 1GHz >

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 10 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

< Above 1GHz >


- a. The EUT was placed on a turntable at the height of 0.8 meters from the ground.
- b. The EUT was set at a distance of 3 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c. An absorber was placed between the EUT and Antenna as required per the CISPR16-1-14 standard, specifically, the measurement setup requirements defined for an accredited test site.
- d. The table was rotated 360 degrees to determine the position of the highest radiation.
- e. Set the measuring receiver system to "Peak Detection" function and "Specified Bandwidth" with the "Maximum Hold" mode set on the measuring receiver.
- f. The DRG Horn Antenna was set at a height of 1 meter while turning the turntable to obtain the EUT's most maximized operational radiation noise readings from both the "Horizontal" and "Vertical" polarizations separately.
- g. When an EUT is located on the turntable, and its height is over 172cm (when the antenna's 3dB beam width of 6GHz is at 27°), the DRG Horn Antenna must be raised and descended while turning the turntable to obtain the EUT's most maximized operational radiation noise readings from both the "Horizontal" and "Vertical" polarizations separately.

NOTE: The maximum raise height of the antenna is the same height as that of the top of the EUT while located on top of the turntable.

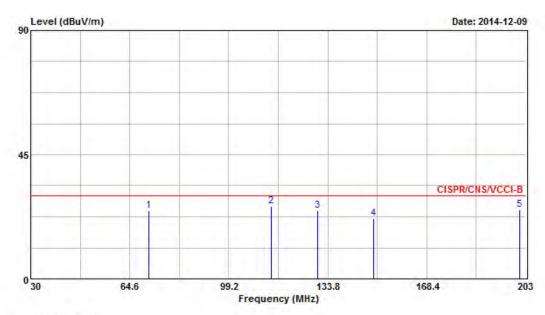

h. If the emission level of the EUT in "Peak Detection" mode is 20dB lower than the "Average" limit (means that the emission level in "Peak Detection" mode also complies with the limit in "Average Mode"), testing will be stopped and "Peak" values of the EUT will be reported, otherwise, the emissions of the EUT will be measured in "Average Mode" again and then reported.

6.2 Typical Test Setup Layout of Radiated Emission

< Below1GHz >

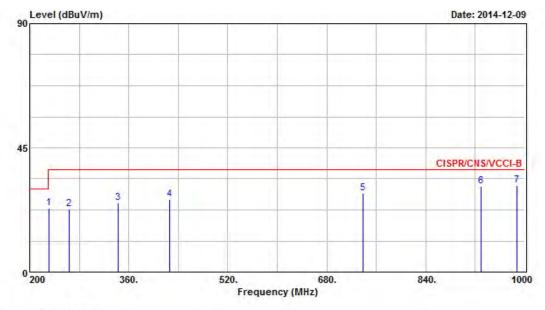
< Above 1GHz >

Remark: When EUT's height is over 172cm, h_{max} = top of EUT


6.3 Test Result of Radiated Emission (Below 1GHz)

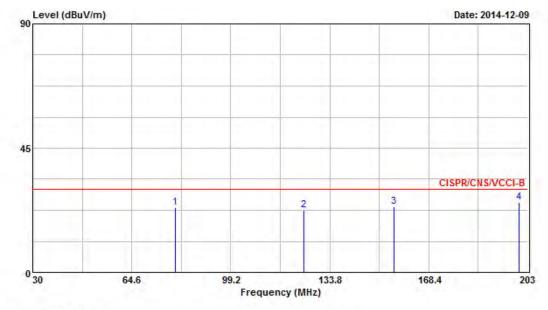
Frequency Range of Test	From 30 MHz to 1,000 MHz	Test Distance	10m
Test Mode	Mode 1	Temperature	21 ℃
Test Engineer	Louis Lin	Humidity	56%

Note: 1. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)

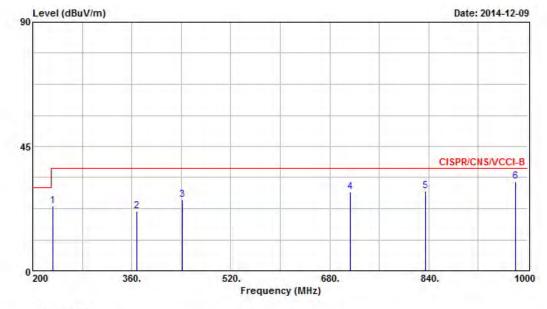

2. Corrected Reading : Antenna Factor + Cable Loss + Read Level – Preamp Factor = Level

The test was passed at the minimum margin that marked by the frame in the following data

Site : OS01-NH Condition : CISPR/CNS/VCCI-B 10m OS01-ANT-03-06-2014 VERTICAL


			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg
1	71.350	24.70	-5.30	30.00	43.69	6.57	1.75	27.31	Peak		
2	0 114.080	26.45	-3.55	30.00	40.25	11.43	1.95	27.18	QP	100	130
3	130.340	24.74	-5.26	30.00	37.94	11.88	2.04	27.12	Peak		
4	149.890	21.91	-8.09	30.00	35.81	10.98	2.15	27.03	Peak		
5	200.920	25.05	-4.95	30.00	40.04	9.09	2.75	26.83	Peak		

Site : OS01-NH Condition : CISPR/CNS/VCCI-B 10m OS01-ANT-03-06-2014 VERTICAL


			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
1	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB)	cm	deg
1	231.200	22.99	-14.01	37.00	36.71	10.25	2.79	26.76	Peak		
2	263.200	22.75	-14.25	37.00	32.85	13.47	3.11	26.68	Peak		
3	342.400	24.89	-12.11	37.00	34.35	14.16	3.29	26.91	Peak		
4	426.400	26.18	-10.82	37.00	33.21	16.88	3.59	27.50	Peak		
5	739.200	28.54	-8.46	37.00	30.00	22.23	4.30	27.99	Peak		
6	928.800	30.91	-6.09	37.00	29.57	23.94	4.90	27.50	Peak	- 	
7	987.200	31.28	-5.72	37.00	28.77	24.87	4.97	27.33	Peak		

Site : OS01-NH Condition : CISPR/CNS/VCCI-B 10m OS01-ANT-03-06-2014 HORIZONTAL

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	79.820	23.36	-6.64	30.00	41.57	7.31	1.77	27.29	Peak		
2	124.800	22.55	-7.45	30.00	35.93	11.74	2.02	27.14	Peak		
з	156.290	23.62	-6.38	30.00	37.61	10.78	2.24	27.01	Peak		
4	199.890	25.29	-4.71	30.00	40.27	9.10	2.75	26.83	Peak		

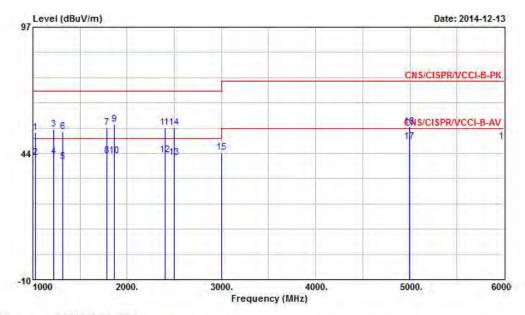
Site : OS01-NH Condition : CISPR/CNS/VCCI-B 10m OS01-ANT-03-06-2014 HORIZONTAL

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2	cm	deg
1	232.800	23.57	-13.43	37.00	37.07	10.45	2.80	26.75	Peak		ليتبل
2	368.000	21.56	-15.44	37.00	30.50	14.75	3.41	27.10	Peak		
3	441.600	25.60	-11.40	37.00	32.63	17.02	3.53	27.58	Peak		
4	713.600	28.38	-8.62	37.00	31.04	21.17	4.20	28.03	Peak		++++
5	835.200	28.82	-8.18	37.00	29.30	23.12	4.18	27.78	Peak		
6	980.000	32.41	-4.59	37.00	29.94	24.85	4.97	27.35	Peak		+++

Photographs of Radiated Emission (Below 1GHz) Test Configuration 6.4

• The photographs show the configuration that generates the maximum emission.

REAR VIEW


6.5 Test Result of Radiated Emission (From 1GHz to 6GHz)

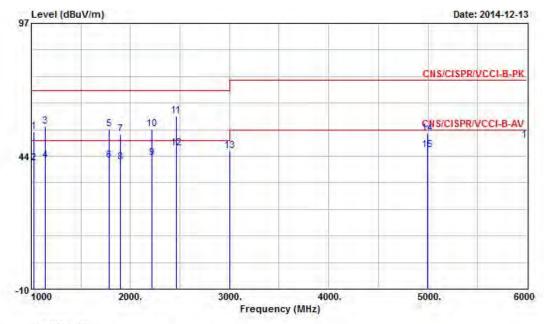
Frequency Range of Test	From 1000 MHz to 6000 MHz	Test Distance	3m
Test Mode	Mode 1	Temperature	23°C
Test Engineer	Alan Chen	Humidity	52%

Note: 1. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)

2. Corrected Reading : Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

The test was passed at the minimum margin that marked by the frame in the following data

Site :03CH04-HY

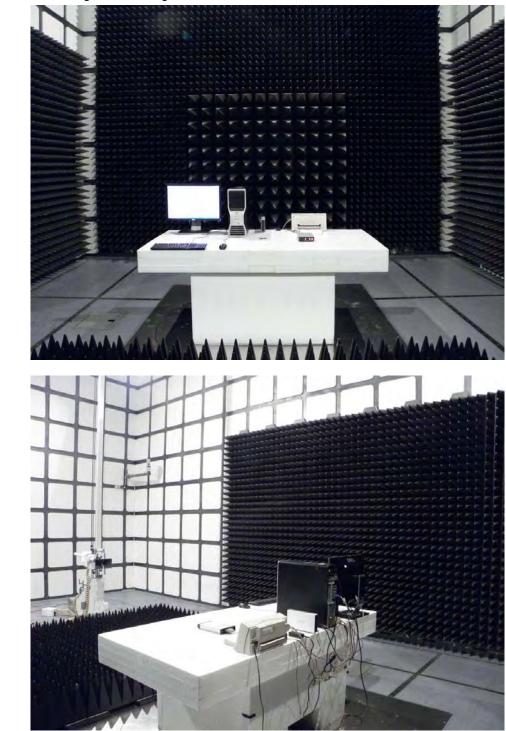

Condition: CNS/	CISPR/	VCCI-B-PK	3m	HF-ANT-9120D	VERTICAL

			Over				Preamp	Cable		Table	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Pos	Pos	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
1	1028.000	52.39	-17.61	70.00	60.22	24.78	34.48	1.88	100	130	Peak
2	1028.000	41.65	-8.35	50.00	49.48	24.78	34.48	1.88	100	130	Average
3	1222.000	53.67	-16.33	70.00	60.63	25.19	34.17	2.02	100	145	Peak
4	1222.000	41.92	-8.08	50.00	48.88	25.19	34.17	2.02	100	145	Average
5	1316.000	40.11	-9.89	50.00	46.67	25.42	34.06	2.08	100	199	Average
5	1316.000	52.80	-17.20	70.00	59.36	25.42	34.06	2.08	100	199	Peak
7	1788.000	54.37	-15.63	70.00	59.68	25.97	33.62	2.34	100	180	Peak
8	1788.000	42.33	-7.67	50.00	47.64	25.97	33.62	2.34	100	180	Average
9	1868.000	55.97	-14.03	70.00	61.16	26.02	33.58	2.37	100	136	Peak
10	1868.000	42.60	-7.40	50.00	47.79	26.02	33.58	2.37	100	136	Average
11	2398.000	54.33	-15.67	70.00	58.39	27.05	33.90	2.78	100	250	Peak
12	2398.000	42.82	-7.18	50.00	46.88	27.05	33.90	2.78	100	250	Average
13	2500.000	41.87	-8.13	50.00	45.71	27.30	33.99	2.85	100	219	Average
14	2500.000	54.48	-15.52	70.00	58.32	27.30	33.99	2.85	100	219	Peak
15	3000.000	44.02	-25.98	70.00	47.04	28.30	34.31	2.99			Peak
16	4998.000	54.74	-19.26	74.00	53.42	31.50	34.40	4.22	100	183	Peak
17 @	4998.000	48.30	-5.70	54.00	46.98	31.50	34.40	4.22	100	183	Average
18	6000.000	48.54	-25.46	74.00	46.09	32.40	34.47	4.52			Peak

SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973

Page Number : 23 of 64 Issued Date Report Version : Rev. 01

: Dec. 24, 2014



Site :03CH04-HY Condition:CNS/CISPR/VCCI-B-PK 3m HF-ANT-9120D HORIZONTAL

			Over	Limit	Read	Antenna	Preamp	Cable	Ant	Table	
	Freq	Level	Limit	Line	Line Level Fa	Factor	Factor	Loss	Pos	Pos	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	-
1	1028.000	53.19	-16.81	70.00	61.02	24.78	34.48	1.88	100	223	Peak
2 3	1028.000	40.77	-9.23	50.00	48.60	24.78	34.48	1.88	100	223	Average
	1142.000	55.37	-14.63	70.00	62.69	25.00	34.29	1.97	100	150	Peak
4	1142.000	41.91	-8.09	50.00	49.23	25.00	34.29	1.97	100	150	Average
5	1788.000	54.54	-15.46	70.00	59.85	25.97	33.62	2.34	100	190	Peak
6	1788.000	41.83	-8.17	50.00	47.14	25.97	33.62	2.34	100	190	Average
7	1900.000	52.26	-17.74	70.00	57.40	26.04	33.57	2.39	100	163	Peak
8	1900.000	40.93	-9.07	50.00	46.07	26.04	33.57	2.39	100	163	Average
8 9	2214.000	42.85	-7.15	50.00	47.37	26.60	33.73	2.61	100	250	Average
10	2214.000	54.38	-15.62	70.00	58.90	26.60	33.73	2.61	100	250	Peak
11	2462.000	59.59	-10.41	70.00	63.50	27.22	33.94	2.82	100	212	Peak
12 @	2462.000	46.82	-3.18	50.00	50.73	27.22	33.94	2.82	100	212	Average
13	3000.000	45.57	-24.43	70.00	48.59	28.30	34.31	2.99	-		Peak
14	4998.000	52.69	-21.31	74.00	51.37	31.50	34.40	4.22	100	188	Peak
15	4998.000	45.92	-8.08	54.00	44.60	31.50	34.40	4.22	100	188	Average
16	6000.000	49.68	-24.32	74.00	47.23	32.40	34.47	4.52			Peak

6.6 Photographs of Radiated Emission Test Configuration (From 1GHz to 6GHz)

• The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

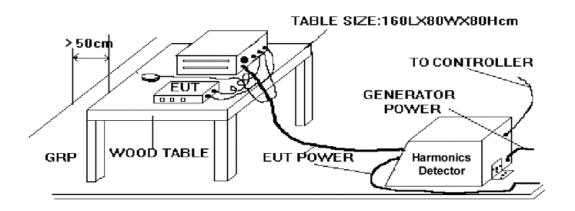
CE *emc test report*

7. Harmonics Test

7.1 Standard

• Standard : EN 61000-3-2:2006/A1:2009 and /A2:2009

7.2 Test Procedure


The measurement of harmonic currents shall be performed as follows:

- for each harmonic order, measure the 1.5 s smoothed r.m.s. harmonic current in each DFT time window as defined in EN / IEC 61000-4-7: 2002.
- calculate the arithmetic average of the measured values from the DFT time windows, over the entire observation period Short cyclic (Tcycle ≤ 2.5 min). Because of synchronisation to meet the requirements for repeatability in 5%.

7.3 Test Equipment Settings

Line Voltage	230 V
Line Frequency	50 Hz
Device Class	
Current Measurement Range	High
Measurement Delay	10 seconds
Test Duration	10 minutes
Class determination Pre-test Duration	10 seconds

7.4 Test Setup

7.5 Current Harmonics Test

As specified on clause 7 of EN 61000-3-2:2006/A1:2009 and /A2:2009, the limits are not specified for equipment with a rated power of 75W or less.

The EUT meets the above condition, so it conforms to EN 61000-3-2.

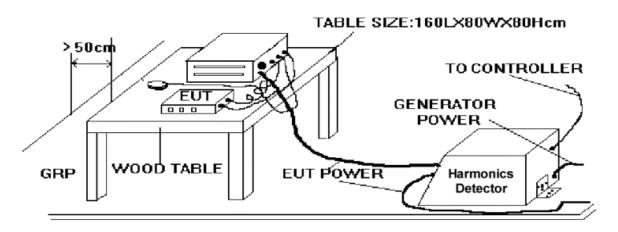
V_RMS (Volts):	229.96	Frequency(Hz):	50.00
I_Peak (Amps):	0.437	I_RMS (Amps):	0.068
I_Fund (Amps):	0.047	Crest Factor:	6.858
Power (Watts):	6.5	Power Factor:	0.449

8. Voltage Fluctuations Test

8.1 Standard

• Standard : EN 61000-3-3:2008

8.2 Test Procedure


The equipment shall be tested under the conditions of Clause 5.

The total impedance of the test circuit, excluding the appliance under test, but including the internal impedance of the supply source, shall be equal to the reference impedance. The stability and tolerance of the reference impedance shall be adequate to ensure that the overall accuracy of $\pm 8\%$ is achieved during the whole assessment procedure.

8.3 Test Equipment Settings

Line Voltage	230 V
Line Frequency	50 Hz
Measurement Delay	10.0 seconds
Pst Integration Time	10 minutes
Pst Integration Periods	1
Test Duration	10 minutes

8.4 Test Setup

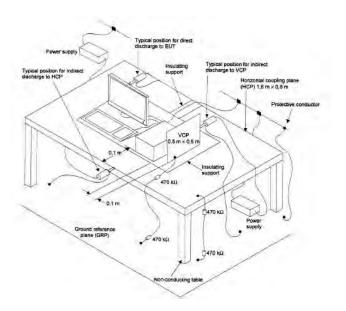
8.5 Test Result of Voltage Fluctuation and Flicker Test

Final Test Result	PASS
Temperature	26 °C
Relative Humidity	52 %
Atmospheric Pressure	98.1kPa
Test Date	Dec. 16, 2014
Test Engineer	Cat Lin

Vrms at the end of test (Volt):	229 .88			
Highest dt (%):	0.00	Test limit (%):	3.30	Pass
Time(mS) > dt:	0.0	Test limit (mŚ):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.102	Test limit:	1.000	Pass

8.6 Photographs of Voltage Fluctuation and Flicker Test

FRONT VIEW



REAR VIEW

9. Electrostatic Discharge Immunity Test (ESD)

Final Test Result	PASS
Obtained Performance Criterion	В
Required Performance Criteria	В
Basic Standard	IEC 61000-4-2
Product Standard	EN 55024:2010
Level	3 for air discharge
	2 for contact discharge
Test Voltage	± 2 / ± 4 / ± 8 kV for air discharge
	± 2 / ± 4 kV for contact discharge
Temperature	25 ℃
Relative Humidity	47%
Atmospheric Pressure	98.1kPa
Test Date	Dec. 18, 2014
Test Engineer	Cat Lin
Observation	Please refer to section 9.5

9.1 Test Setup

setup consists of the test generator, EUT and auxiliary instrumentation necessary to perform DIRECT and INDIRECT application of discharges to the EUT as applicable, in the follow manner :

- a. CONTACT DISCHARGE to the conductive surfaces and to coupling plane;
- b. AIR DISCHARGE at insulating surfaces.

The preferred test method is that of type tests performed in laboratories and the only accepted method of demonstrating conformance with this standard. The EUT was arranged as closely as possible to arrangement in final installed conditions.

CE*emc test report*

9.2 Test Setup for Tests Performed in Laboratory

A ground reference plane was provided on the floor of the test site. It was a metallic sheet (copper or aluminum) of 0.25 mm, minimum thickness; other metallic may be used but they shall have at least 0.65 mm thickness. In the SPORTON EMC LAB., we provided 1 mm thickness aluminum ground reference plane or 1 mm thickness stainless steel ground reference plane. The minimum size of the ground reference plane is 1 m x 1 m, the exact size depending on the dimensions of the EUT. It was connected to the protective grounding system.

The EUT was arranged and connected according to its functional requirements. A distance of 1m minimum was provided between the EUT and the wall of the lab. and any other metallic structure. In cases where this length exceeds the length necessary to apply the discharges to the selected points, the excess length shall, where possible, be placed non-inductively off the ground reference plane and shall not come closer than 0.2m to other conductive parts in the test setup.

Where the EUT is installed on a metal table, the table was connected to the reference plane via a cable with a 470k ohm resister located at each end, to prevent a build-up of charge. The test setup was consist a wooden table, 0.8m high, standing on the ground reference plane. A HCP, 1.6 m x 0.8 m, was placed on the table. The EUT and cables was isolated from the HCP by an insulating support 0.5 mm thick. The VCP size, 0.5 m x 0.5 m.

9.3 ESD Test Procedure

- a. In the case of air discharge testing the climatic conditions shall be within the following ranges:
 - ambient temperature: 15° C to 35° C;
 - relative humidity : 30% to 60%;
 - atmospheric pressure : 86 kPa (860 mbar) to 106 kPa (1060 mbar).
- b. Test programs and software shall be chosen so as to exercise all normal modes of operation of the EUT. The use of special exercising software is encouraged, but permitted only where it can be shown that the EUT is being comprehensively exercised.
- c. The test voltage shall be increased from the minimum to the selected test severity level, in order to determine any threshold of failure. The final severity level should not exceed the product specification value in order to avoid damage to the equipment.
- d. The test shall be performed with both air discharge and contact discharge. On preselected points at least 10 single discharges (in the most sensitive polarity) shall be applied on air discharge. On preselected points at least 25 single discharges (in the most sensitive polarity) shall be applied on contact discharge.
- e. For the time interval between successive single discharges an initial value of one second is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.
- f. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

CE EMC TEST REPORT

g. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted :

- If the coating is not declared to be an insulating coating by the equipment manufacturer, then the pointed tip of the generator shall penetrate the coating so as to make contact with the conducting substrate.

- Coating declared as insulating by the manufacturer shall only be submitted to the air discharge.
- The contact discharge test shall not be applied to such surfaces.
- h. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.

9.4 Test Severity Levels

9.4.1 Contact Discharge

Level	Test Voltage (kV) of Contact Discharge
1	±2
2	±4
3	±6
4	±8
Х	Specified

Remark : "X" is an open level.

9.4.2 Air Discharge

Level	Test Voltage (kV) of Air Discharge
1	±2
2	±4
3	±8
4	±15
Х	Specified

Remark : "X" is an open level.

CE EMC TEST REPORT

9.5 Test Points

9.5.1 Test Result of Air Discharge

Test Point No. Of		Air Discharge / Round Tip						Test Record
lest i olit	Discharges	+2kV	-2kV	+4kV	-4kV	-8kV	+8kV	Test Record
Power Switch	10	А	А	А	А	В	В	Note ¹
ESATA Port	10	А	А	А	А	А	А	None
Gap	10	А	А	A	А	А	A	None
DC Input Jack	10	А	А	А	А	А	А	None
LED	10	А	А	А	Α	Α	А	None
AC Socket	10	А	А	А	Α	Α	А	None
Hole	10	А	А	А	Α	Α	А	None
Remark Note ¹ : During the test at ±8kV at air discharge on the Power Switch, reading and writing were delayed. After the interruption, the power of EUT reset automatically.								

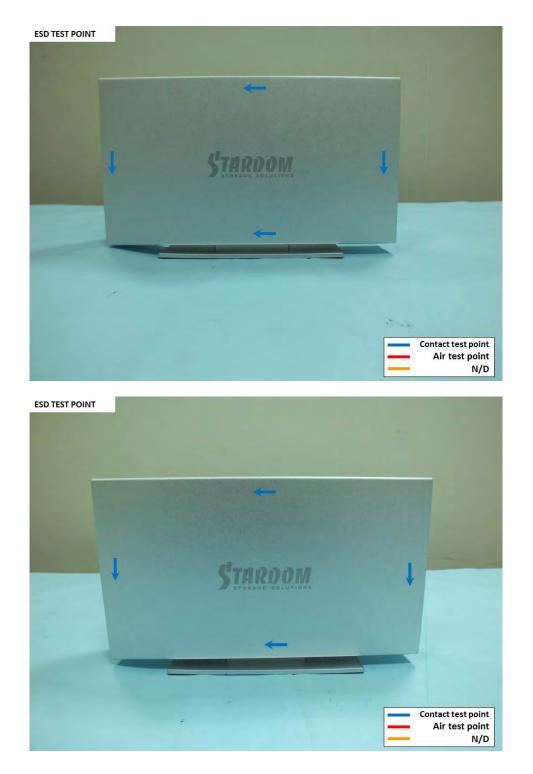
9.5.2 Test Result of Contact Discharge

For Direct discharge

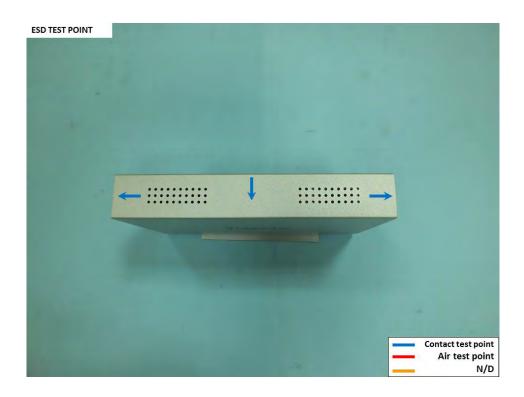
	No. of	Co	Contact Discharge / Pointed Tip			
Test Point	Discharges	+2kV	-2kV	+4kV	-4kV	Test Record
Case	25	А	А	В	В	Note ¹
USB 3.0 Port	25	А	А	В	В	Note ¹
Remark	Note ¹ : During the test at ±4kV at contact discharge on the Case and USB 3.0 Port, reading and					
Remark	writing were dela	ayed. After the inte	erruption, the po	wer of EUT res	et automatically.	

For indirect discharge to HCP and VCP

Test Point	No. Of					
Test i onit	Discharges	+2kV	-2kV	+4kV	-4kV	Test Record
HCP (At Front)	25	А	А	А	А	None
HCP (At Left)	25	A	А	А	А	None
HCP (At Right)	25	A	А	А	А	None
HCP (At Rear)	25	A	А	А	А	None
VCP (At Front)	25	А	А	А	А	None
VCP (At Left)	25	A	А	А	А	None
VCP (At Right)	25	A	А	А	А	None
VCP (At Rear)	25	А	А	А	А	None



9.6 Photographs of Test Points



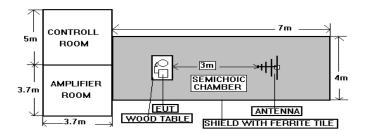
SPORTON International Inc. TEL : 886-3-327-3456 FAX : 886-3-327-0973

Report No. : EC4D0807

Report No. : EC4D0807

9.7 Photographs of Electrostatic Discharge Immunity Test

FRONT VIEW


REAR VIEW

CE *EMC* TEST REPORT

10. Radio Frequency Electromagnetic Field Immunity Test (RS)

Final Test Result	PASS
Obtained Performance Criterion	A
Required Performance Criteria	A
Basic Standard	IEC 61000-4-3
Product Standard	EN 55024:2010
Level	2
Frequency Range	80-1000 MHz
Field Strength	3 V/m (unmodulated, r.m.s) 80% AM (1 kHz)
Temperature	24 °C
Relative Humidity	49%
Atmospheric Pressure	98.1kPa
Test Date	Dec. 16, 2014
Test Engineer	Cat Lin
Observation	Normal

10.1 Test Setup

NOTE : The SPORTON 7m x 4m x 4m semichoic chamber is compliance with the sixteen points uniform field requirement as stated in IEC 61000-4-3 Section 6.2.

The procedure defined in this part requires the generation of electromagnetic fields within which the test sample is placed and its operation observed. To generate fields that are useful for simulation of actual (field) conditions may require significant antenna drive power and the resultant high field strength levels. To comply with local regulations and to prevent biological hazards to the testing personnel, it is recommended that these tests be carried out in a shielded enclosure or semichoic chamber.

10.2 Test Procedure

- a. The equipment to be tested is placed in the center of the enclosure on a wooden table. The equipment is then connected to power and signal leads according to pertinent installation instructions.
- b. The bilog antenna which is enabling the complete frequency range of 80-1000 MHz is placed 3m away from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the applicable antennae.
- c. The test is normally performed with the generating antenna facing each of four sides of the EUT. The polarization of the field generated by the broadband (bilog) antenna necessitates testing each position twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.
- d. At each of the above conditions, the frequency range is swept 80-1000 MHz, pausing to adjust the R.F. signal level or to switch oscillators and antenna. The rate of sweep is in the order of 1.5*10⁻³ decades/s. The sensitive frequencies or frequencies of dominant interest may be discretely analyzed.

10.3 Test Severity Levels

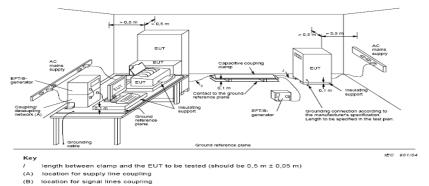
Frequency Band : 80-1000 MHz

Level	Test Field Strength (V/m)
1	1
2	3
3	10
Х	Specified

Remark : "X" is an open class.

10.4 Photographs of Radio Frequency Electromagnetic Field Immunity Test

FRONT VIEW



REAR VIEW

11. Electrical Fast Transient/Burst Immunity Test (EFT/BURST)

Final Test Result	PASS		
Obtained Performance Criterion	В		
Required Performance Criteria	В		
Basic Standard	IEC 61000-4-4		
Product Standard	EN 55024:2010		
Level	on input power ports 2		
Test Voltage	on input power ports \pm 0.5 / \pm 1.0 kV		
Test Location	L+N		
Temperature	25 ℃		
Relative Humidity	48%		
Atmospheric Pressure	98.1kPa		
Test Date	Dec. 16, 2014		
Test Engineer	Cat Lin		
Observation	When testing at 1kV, reading and writing were delayed. After the interruption, the power of EUT reset automatically.		

11.1 Test Setup

The EUT was placed on a ground reference plane and was insulated from it by an insulating support about 0.1m thick. If the EUT is table-top equipment, it was located approximately 0.8m above the GRP. The GRP. was a metallic sheet (copper or aluminum) of 0.25 mm ,minimum thickness; other metallic may be used but they shall have at least 0.65 mm thickness. It shall project beyond the EUT by at least 0.1m on all sides and connected to the protective earth. In the SPORTON EMC LAB. we provided 1 mm thickness aluminum ground reference plane or 1 mm thickness stainless steel ground reference plane. The minimum size of the ground reference plane is 1 m x 1 m, the exact size depending on the dimensions of the EUT. It was connected to the protective grounding system. The EUT was arranged and connected according to its functional requirements. The minimum distance between the EUT and other conductive structures, except the GRP. beneath the EUT, was more than 0.5 m. Using the coupling clamp, the minimum distance between the coupling clamp, the minimum distance between the structures, except the GRP. beneath the EUT, was more than 0.5 m. The length of the signal and power lines between the coupling device and the EUT was 1m or less.

11.2 Test on Power Line

- a. The EFT/B-generator was located on the GRP.. The length from the EFT/B-generator to the EUT as not exceed 1 m.
- b. The EFT/B-generator provides the ability to apply the test voltage in a non-symmetrical condition to the power supply input terminals of the EUT.

11.3 Test on Communication Lines

- a. The coupling clamp is composed of a clamp unit for housing the cable (length more than 3 m), and was placed on the GRP.
- b. The coupling clamp provides the ability of coupling the fast transient/bursts to the cable under test.

11.4 Test Procedure

- a. In order to minimize the effect of environmental parameters on test results, the climatic conditions when test is carrying out shall comply with the following requirements:
 - ambient temperature: 15° C to 35° C;
 - relative humidity : $45\%\,$ to 75%;
 - atmospheric pressure : 86 kPa (860 mbar) to 106 kPa (1060 mbar)..
- b. In order to minimize the effect of environmental parameters on test results, the electromagnetic environment of the laboratory shall not influence the test results.
- c. The variety and diversity of equipment and systems to be tested make it difficult to establish general criteria for the evaluation of the effects of fast transients/bursts on equipment and systems.
- d. The test results may be classified on the basic of the operating conditions and the functional specification of the equipment under test, according to the following performance criteria :
 - Normal performance within the specification limits.
 - Temporary degradation or loss of function or performance which is self-recoverable.
 - Temporary degradation or loss of function or performance which requires operator intervention or system reset.
 - Degradation or loss of function which is not recoverable due to damage of equipment (components).

11.5 Test Severity Levels

The following test severity levels are recommended for the fast transient/burst test :

	Open Circuit Output Test Voltage <u>+</u> 10%				
Level	On Power Supply	On I/O Signal, Data and Control Line			
1	0.5 kV	0.25 kV			
2	1.0 kV	0.50 kV			
3	2.0 kV	1.00 kV			
4	4.0 kV	2.00 kV			
Х	Specified	Specified			

Remark : " X " is an open level. The level is subject to negotiation between the user and the manufacturer or is specified by the manufacturer.

11.6 Photographs of Electrical Fast Transient/Burst Immunity Test

FRONT VIEW

REAR VIEW

12. Surge Immunity Test

Final Test Result	PASS
Obtained Performance Criterion	A
Required Performance Criteria	В
Basic Standard	IEC 61000-4-5
Product Standard	EN 55024:2010
Surge wave form (Tr/Th)	1,2/50 (8/20) for input power ports
Level	on input power ports 3
Test Voltage	on Input AC Power Port \pm 1.0 / \pm 2.0 kV
Temperature	24 ℃
Relative Humidity	51 %
Atmospheric Pressure	98.1kPa
Test Date	Dec. 16, 2014
Test Engineer	Cat Lin
Observation	Please refer to section 12.1

12.1 Test Record

■ Input AC power port:

	Delerity	Phase Angle				Test Record	
voltage (kv)	Voltage (kV) Test Location	Polarity	0 °	90°	180°	270 °	Test Record
1.0.10/	1.0 kV L - N	+	Α	Α	A	А	None
1.0 KV		_	А	Α	Α	Α	None
	2.0 kV N - PE	+	А	Α	Α	А	None
2010/		_	А	Α	Α	Α	None
2.0 KV		+	А	Α	A	Α	None
		_	А	A	A	A	None

12.2 Test Level

Level	Open-Circuit Test Voltage, \pm 10%, kV		
1	0.5		
2	1.0		
3	2.0		
4	4.0		
х	Specified		
NOTE - x is an open class.			
This level can be specified in the product specification.			

12.3 Test Procedure

a. Climatic conditions

The climatic conditions shall comply with the following requirements :

- -- ambient temperature : 15 $\,^\circ\!\mathrm{C}\,$ to 35 $\,^\circ\!\mathrm{C}\,$
- -- relative humidity : 10 % to 75 %
- -- atmospheric pressure : 86 kPa to 106 kPa (860 mbar to 1060 mbar)
- b. Electromagnetic conditions

The electromagnetic environment of the laboratory shall not influence the test results.

- c. The test shall be performed according the test plan that shall specify the test set-up with
 - -- generator and other equipment utilized;
 - -- test level (voltage/current);
 - -- generator source impedance;
 - -- internal or external generator trigger;
 - -- number of tests : at least five positive and five negative at the selected points;
 - -- repetition rate : maximum 1/min.
 - -- inputs and outputs to be tested;
 - -- representative operating conditions of the EUT;
 - -- sequence of application of the surge to the circuit;
 - -- phase angle in the case of a.c. power supply;
 - -- actual installation conditions, for example :
 - AC : neutral earthed,

DC : (+) or (-) earthed to simulated the actual earthing conditions.

- d. If not otherwise specified the surges have to be applied synchronized to the voltage phase at the zero-crossing and the peak value of the A.C. voltage wave (positive and negative).
- e. The surges have to be applied line to line and line(s) and earth. When testing line to earth, the test voltage has to be applied successively between each of the lines and earth, if there is no other specification.
- f. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore the test voltage has to be increased by steps up to the test level specified in the product standard or test plan.
- g. All lower levels including the selected test level shall be satisfied. For testing the secondary protection, the output voltage of the generator shall be increased up to the worstcase voltage breakdown level (let-through level) of the primary protection.
- h. If the actual operating signal sources are not available, the may be simulated. Under no circumstances may the test level exceed the product specification. The test shall be carried out according the a test plan.

 To find all critical points of the duty cycle of the equipment, a sufficient number of positive and negative test pulses shall be applied. For acceptance test a previously unstressed equipment shall be used to the protection devices shall be replaced.

12.4 Operating Condition

Full system

12.5 Photographs of Surge Immunity Test

FRONT VIEW

REAR VIEW

CE_{EMC} TEST REPORT

13. Conducted Disturbances Induced by Radio-Frequency Field Immunity Test (CS)

Final Test Result	PASS
Obtained Performance Criterion	A
Required Performance Criteria	A
Basic Standard	IEC 61000-4-6
Product Standard	EN 55024:2010
Level	2
Test Voltage	3 V (unmodulated, r.m.s), 80% AM (1 kHz)
Frequency Range	0.15 MHz to 80 MHz
Test Port	on AC Power Port
Dwell time	2.9 seconds
Frequency step size	1 %
Coupling mode	CDN-M16 SW M2 for AC power Port
Temperature	24 °C
Relative Humidity	52 %
Atmospheric Pressure	98.1kPa
Test Date	Dec. 18, 2014
Test Engineer	Cat Lin
Observation	Normal

13.1 Test Level

Level	Voltage Level (EMF)		
1	1 V rms		
2	3 V rms		
3	10 V rms		
x	Specified		
NOTE - x is an open class. This level can be specified in the product specification.			

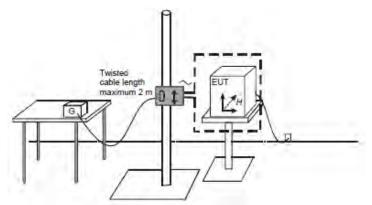
13.2 Test Procedure

- a. The EUT shall be operated within its intended climatic conditions. The temperature and relative humidity should be recorded.
- b. This test method test can be performed without using a sell shielded enclosure. This is because the disturbance levels applied and the geometry of the setups are not likely to radiated a high amount of energy, especially at the lower frequencies. If under certain circumstances the radiated energy is too high, a shielded enclosure has to be used.
- c. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF-input ports of the coupling devices are terminated by a 50 ohm load resistor.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1kHz sinewave, pausing to adjust the RF-signal level or to switch coupling devices as necessary. The rate of sweep shall no exceed 1.5 x 10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall no exceed 1% of the start and thereafter 1% of the preceding frequency value.
- e. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency(ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- f. In cases of dispute, the test procedure using a step size not exceeding 1% of the start and thereafter 1% of preceding frequency value shall take precedence.
- g. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.
- h. The use of special exercising programs is recommended.
- i. Testing shall be performed according to a Test Plan, which shall be included in the test report.
- j. It may be necessary to carry out some investigatory testing in order to establish some aspects of the test plan.

13.3 Photographs of CS Immunity Test

FRONT VIEW

REAR VIEW


14. Power Frequency Magnetic Field Immunity Tests

Final Test Result	PASS
Obtained Performance Criterion	А
Required Performance Criteria	A
Basic Standard	IEC 61000-4-8
Product Standard	EN 55024:2010
Temperature	24 °C
Relative Humidity	51 %
Atmospheric Pressure	98.1kPa
Test Date	Dec. 16, 2014
Test Engineer	Cat Lin
Observation	Normal

14.1 Test Record

Power Frequency Magnetic Field	Testing duration	Coil Orientation	Results
50Hz/60Hz, 1A/m	1.0 Min	X-axis	А
50Hz/60Hz, 1A/m	1.0 Min	Y-axis	А
50Hz/60Hz, 1A/m	1.0 Min	Z-axis	А

14.2 Test Setup

14.3 Photographs of Power Frequency Magnetic Field Immunity Tests

FRONT VIEW

REAR VIEW

CE_{EMC} TEST REPORT

15. Voltage Dips and Voltage Interruption Immunity Tests

Final Test Result	PASS
Obtained Performance Criterion	<u>C</u> for voltage interruption, <u>A/A</u> for voltage dips
Required Performance Criteria	C for voltage interruption, C/B for voltage dips
Basic Standard	IEC 61000-4-11
Product Standard	EN 55024:2010
Test Port	Input power ports
Temperature	25 ℃
Relative Humidity	49 %
Atmospheric Pressure	98.1kPa
Test Date	Dec. 16, 2014
Test Engineer	Cat Lin
Observation	Normal

15.1 Test Record of Voltage Interruption

Voltage	Phase	Angle	% Reduction	Duration	Test Desard
(V)	0 °	180 °	% Reduction	(Periods)	Test Record
100, 240	С	С	>95%	250	After the interruption, the power of EUT reset automatically.

15.2 Test Record of Voltage Dips

Voltage	Phase	Angle	% Reduction	Duration	Test Reserd
(V)	0 °	180 °	% Reduction	(Periods)	Test Record
100, 240	А	А	30%	25	None
100, 240	А	А	>95 %	0.5	None

15.3 Testing Requirement and Procedure

The test was based on IEC 61000-4-11

15.4 Test Conditions

- 1. Source voltage and frequency : 100V / 60Hz, 240V / 50Hz, Single phase.
- 2. Test of interval : 10 sec.
- 3. Level and duration : Sequency of 3 dips/interrupts.
- 4. Voltage rise (and fall) time : 1 \sim 5 $\mu s.$

15.5 Operating Condition

Full system

15.6 Photographs of Voltage Dips and Voltage Interruption Immunity Tests

FRONT VIEW

REAR VIEW

16. Uncertainty of Test Site

< EMI >

Test Items	Test Site No.	Uncertainty	Remark
Conducted Emissions	CO01-NH	± 2.6 dB	Confidence levels of 95%
Radiated Emissions below 1GHz	OS01-NH	± 2.8 dB	Confidence levels of 95%
Radiated Emissions above 1GHz	03CH04-HY	± 4.8 dB	Confidence levels of 95%

< EMS >

• ESD Immunity (IEC 61000-4-2)

Negative Discharge Current

From Standard						
2kV	Current at 60ns					
Nominal	7.5	4	2			
Min	6.75	2.8	1.4			
Max	8.25	5.2	2.6			
Tolerance in %	10%	30%	30%			

From calibration certificate						
Measured First Peak Current	1st Peak Worst case. +5%	Measured Current at 30ns	30ns Worst case. +5%	Measured Current at 60ns	60ns Worst case. -5%	
7.48	7.85	4.2	4.41	2.01	2.11	
	6.75		2.8		1.4	
	8.25		5.2		2.6	

4kV	First Peak Current	Current at 30ns	
Nominal	15	8	4
Min	13.5	5.6	2.8
Max	16.5	10.4	5.2
Tolerance in %	10%	30%	30%

First Peak Current	1st Peak Worst case. +5%	Measured Current at 30ns	30ns Worst case. +5%	Measured Current at 60ns	60ns Worst case. +5%
15.12	15.88	8.03	8.43	3.68	3.86
	13.5		5.6		2.8
	16.5		10.4		5.2

6kV	First Peak Current	Current at 30ns	
Nominal	22.5	12	6
Min	20.25	8.4	4.2
Max	24.75	15.6	7.8
Tolerance in %	10%	30%	30%

First Peak Current	1st Peak Worst case5%	Measured Current at 30ns	30ns Worst case. +5%	Measured Current at 60ns	60ns Worst case. +5%
22.78	23.92	12.37	12.99	5.45	5.72
	20.25		8.4		4.2
	24.75		15.6		7.8

From Standard					
8kV	First Peak Current		Current at 60ns		
Nominal	30	16	8		
Min	27	11.2	5.6		
Max	33	20.8	10.4		
Tolerance in %	10%	30%	30%		

From calibration certificate						
First Peak Current	1st Peak Worst case. +5%Measured Current 				60ns Worst case. +5%	
30.26	31.77	16.13	16.94	7.39	7.76	
	27		11.2		5.6	
	33		20.8		10.4	

Negative Discharge Voltage

Standard Parameters					
Indicated Voltage (kV)	Tolerance (%)	Max. (kV)	Min. (kV)		
2	10	2.20	1.80		
4	10	4.40	3.60		
6	10	6.60	5.40		
8	10	8.80	7.20		
15	10	16.50	13.50		

Measured Values (kV)
2.05
4.027
5.955
7.916
14.839

Negative Rise Time

Standard Parameters				
1ns				
T min 0.7ns				

Measured Values					
Indicated Voltage	Measured Rise Time	Worst Case max. +6%	Worst Case min6%		
2kV	0.851	0.902	0.799		
4kV	0.780	0.827	0.733		
6kV	0.750	0.795	0.705		
8kV	0.772	0.818	0.726		

It has been demonstrated that the ESD generator meets the specified requirements in the standard with at least a 95% confidence.

• RF Radiated Immunity (IEC 61000-4-3)

Symbol	Source of Uncertainty	Value	Probability distribution	Divisor	u _i (y)
F _{SM}	Felds Strength monitor	1.5	Normal 2	2.000	0.75
FS _{AW}	Field Strength acceptability window	0.50	Rectangular	1.732	0.29
PAH	Power Amplifier Harmonics	0.50	Rectangular	1.732	0.29
Rs	Measurement System Repeatability	0.50	normal 1	1.000	0.50
R _{EUT}	Repeatability of EUT	0.00	normal 1	1.000	0.00
u _c (F _S)	Combined Standard Uncertainty		normal		0.83
U (F _S)	Expanded Uncertainty		normal k= 2		1.66

Specified Level (V/m)	Test level (V/m)
For 1 Volts	1.25
For 3 Volts	3.33
For 10 Volts	11.22

• EFT/BURST Immunity (IEC 61000-4-4) Voltage Output

	Standard F			
Indicated Voltage (kV)	Tolerance (%)	Max. (kV)	Min. (kV)	Measured Values (kV)
0.5	10	0.55	0.45	0.489
1	10	1.1	0.9	1.006
2	10	2.2	1.8	2.016
4	10	4.4	3.6	3.830
- 0.5	10	- 0.55	- 0.45	- 0.489
- 1	10	- 1.1	- 0.9	- 0.972
- 2	10	- 2.2	- 1.8	- 1.961
- 4	10	- 4.4	- 3.6	- 3.770

Spike Frequency

Standard Parameters					
Indicated Voltage		Tolerance	Max.	Min.	Measured Values (kHz)
(kV)	(kHz)	(%)	(kHz)	(kHz)	()
0.5	5	10	5.5	4.5	5.00
1	5	10	5.5	4.5	4.98
2	5	10	5.5	4.5	4.98
4	2.5	10	2.75	2.25	2.49
4	5	10	5.5	4.5	5.01

Burst Width

	Star				
Indicated	d Voltage	Tolerance	lerance Max. Min.		Measured Values (ms)
(kV)	(ms)	(%)	(ms)	(ms)	(110)
0.5	15	20	18	12	14.97
1	15	20	18	12	14.94
2	15	20	18	12	14.91
4	15	20	18	12	14.95

Burst Period

	Star					
Indicated	d Voltage	Tolerance	Tolerance Max. N		I	Measured Values (ms)
(kV)	(ms)	(%)	(ms)	(ms)		(inc)
0.5	300	20	360	240		299.7
1	300	20	360	240		300.5
2	300	20	360	240		299.2
4	300	20	360	240		300.2

It has been demonstrated that the EFT/BURST generator meets the specified requirements in the standard with at least a 95% confidence.

• Surge Immunity (IEC 61000-4-5) Surge Voltage Output

	Standard Parameters							
Indicated Voltage. (kV)	Tolerance (%)	Max.(kV)	Min. (kV)	Measured Values (kV)				
0.5	10	0.55	0.45	0.488				
1	10	1.1	0.9	0.964				
2	10	2.2	1.8	1.984				
4	10	4.4	3.6	3.94				
6	10	6.6	5.4	5.91				
- 0.5	10	- 0.55	- 0.45	- 0.484				
- 1	10	- 1.1	- 0.9	- 0.977				
- 2	10	- 2.2	- 1.8	- 1.992				
- 4	10	- 4.4	- 3.6	- 3.95				
- 6	10	- 6.6	- 5.4	- 5.91				

Output Wave

	Measured Values					
	+ 6 kV					
	Max.	Min.				
Rise Time	1.56 µs	0.84 µs	1.24 µs			
Duration Time	60 µs	40 µs	52.83 µs			
	+ 6 kV					
	Max.	Min.				
Rise Time	1.56 µs	0.84 µs	1.30 µs			
Duration Time	60 µs	40 µs	54.72 µs			

It has been demonstrated that the Surge generator meets the specified requirements in the standard with at least a 95% confidence.

• RF Conducted Immunity (IEC 61000-4-6)

Symbol	Source of Uncertainty	Value	Probability distribution	Divisor	<i>u</i> _i (y)
SA	Spectrum Analyzer	1.50	Rectangular	1.732	0.87
C _C	Current coil Calibration	1.00	normal 2	2.000	0.50
М	Mismatch	-0.5	U-shaped	1.414	-0.35
М	Mismatch	-0.3	U-shaped	1.414	-0.35
Rs	Measurement System Repeatability	0.50	normal 1	1.000	0.50
R _{EUT}	Repeatability of EUT	0.00	normal 1	1.000	0.00
u _c (F _S)	Combined Standard Uncertainty		normal		1.57
U (Fs)	Expanded Uncertainty		normal k= 2		3.14

Specified Level	Test level (V)
For 1 Volts	1.30
For 3 Volts	3.88
For 10 Volts	12.15

• Magnetic Field Immunity (IEC 61000-4-8) Current output

e all e alpar					
Magnetic Field Strength (A/m)	trength Current		ToleranceMax.(%)(A)		Measured Values (A)
1	6	5	6.3	3.8	6.1
3	50	5	52.5	47.5	49.0
10	180	5	189	171	188.0

It has been demonstrated that the Magnetic generator meets the specified requirements in the standard with at least a 95% confidence.

• Voltage Variation Immunity (IEC 61000-4-11)

	Measured Values				
Degree	Duration (ms)	Tolerance (%)	(ms)		
90	4	5	4.2	3.8	4.17
180	8	5	8.4	7.6	8.33
270	12	5	12.6	11.4	12.50
360	16	5	16.8	15.2	16.67

Short Dip Period

Long Dip Period

	Measured Values				
Degree	Duration (ms)	Tolerance (%)	Max. (ms)	Min. (ms)	(ms)
90	16	5	16.8	15.2	16.38
180	50	5	55	45	50.04
270	100	5	110	90	99.64
360	150	5	165	135	149.3

It has been demonstrated that the Dip generator meets the specified requirements in the standard with at least a 95% confidence.

17. List of Measuring Equipment Used

< Conducted Emission >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Receiver	R&S	ESCS 30	100357	9 kHz - 2.75 GHz	Jun. 13, 2014	Conduction (CO01-NH)
LISN	SCHAFFNER	NNB41	04/10153	9kHz - 30MHz	Mar. 18, 2014	Conduction (CO01-NH)
LISN	KYORITSU	KNW-407	8-1010-15	9kHz – 30MHz	N/A	Conduction (CO01-NH)
Power Filter	CORCOM	MR12030	N/A	30A*2	N/A	Conduction (CO01-NH)
RF Cable-CON	Suhner Switzerland	RG223/U	CB004	9kHz - 30MHz	Dec. 11, 2013	Conduction (CO01-NH)

※ Calibration Interval of instruments listed above is one year.

< Radiated Emission below 1GHz >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Open Area Test Site	SPORTON	OATS-10	OS01-NH	30 MHz - 1 GHz 10m	Jul. 27, 2014	Radiation (OS01-NH)
Amplifier	HP	8447D	2944A06292	0.1 MHz - 1.3 GHz	Apr. 21, 2014	Radiation (OS01-NH)
Spectrum Analyzer	R&S	FSP	838858/038	9 kHz – 7 GHz	Mar. 17, 2014	Radiation (OS01-NH)
Test Receiver	R&S	ESCS 30	100167	9 kHz - 2.75 GHz	Nov. 07, 2014	Radiation (OS01-NH)
Bilog Antenna	SCHAFFNER	CBL6111C	2738	30 MHz ~ 1 GHz	Mar. 06, 2014	Radiation (OS01-NH)
Turn Table	EMCO	1060-1.211	9507-1805	0 ~ 360 degree	NCR	Radiation (OS01-NH)
Antenna Mast	EMCO	1051-1.2	9503-1876	1 m ~ 4 m	NCR	Radiation (OS01-NH)
RF Cable-R10m	BELDEN	RG8/U	CB001	30 MHz ~ 1 GHz	Nov. 05, 2014	Radiation (OS01-NH)

% Calibration Interval of instruments listed above is one year.

< Radiated Emission above 1GHz >

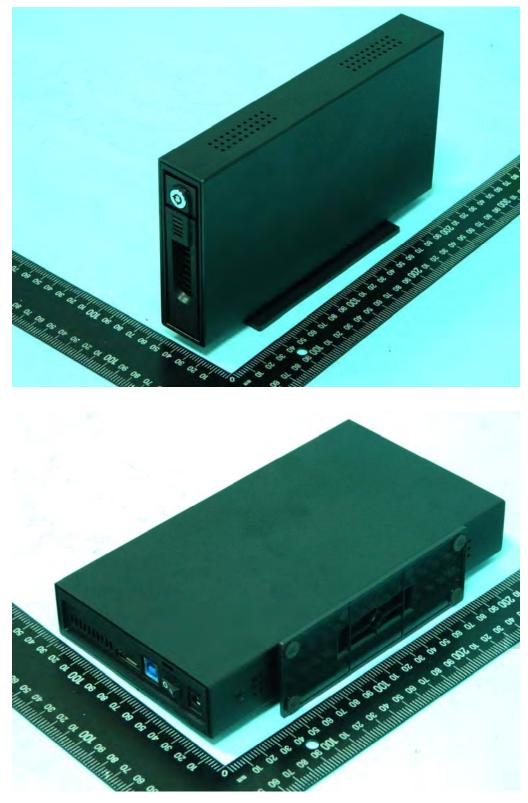
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH04-HY	1 GHz ~ 6 GHz 3m	May 16, 2014	Radiation (03CH04-HY)
Receiver	R&S	ESU	100422	20Hz ~ 26.5GHz	Jun. 19, 2014	Radiation (03CH04-HY)
Amplifier	Agilent	8449B	3008A02326	1GHz ~ 26.5GHz	May 22, 2014	Radiation (03CH04-HY)
Horn Antenna	SCHWARZBECK	BBHA9120	BBHA9120D1130	1 GHz ~ 18 GHz	Sep.16, 2014	Radiation (03CH04-HY)
Turn Table	Chaintek	3000	MF7802056	0 ~ 360 degree	NCR	Radiation (03CH04-HY)
Antenna Mast	MF	MF-7802	MF780208163	1 m ~ 4 m	NCR	Radiation (03CH04-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	CB065-HF	1 GHz ~ 40 GHz	Nov.12 , 2014	Radiation (03CH04-HY)

% Calibration Interval of instruments listed above is one year.

* NCR: No calibration request.

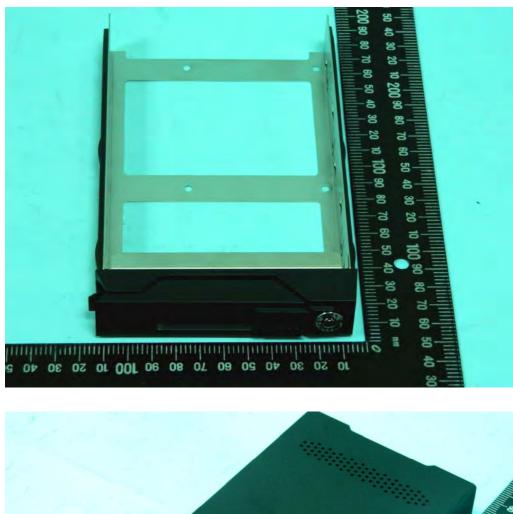
Report No. : EC4D0807

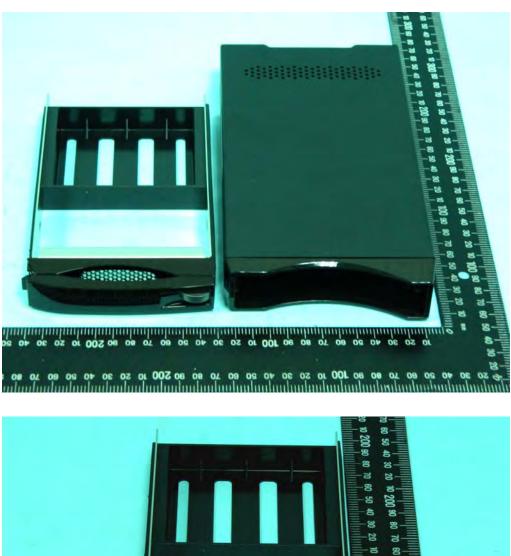
< EMS >

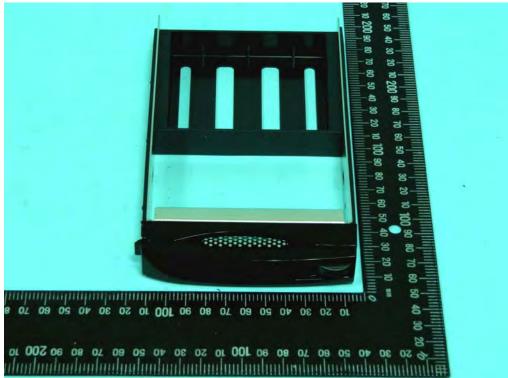

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
ESD Simulator	SCHAFFNER	NSG 437	192	Air: 0 ~ 30kV Contact: 0 ~ 30kV	Oct. 02, 2014	ESD (ES01-HY)
RS immunity Test system	ROHDE& SCHWARZ	RSF	RS-01	80M~3GHz	Mar. 14, 2014	RS (RS01-HY)
Amplifier	AR	250W 1000AM	0332909	80MHz ~ 1GHz	Mar. 05, 2014	RS (RS01-HY)
DUAL DIRECTIONAL COUPLER	AMPLIFIER& RESEARCH	DC6180A	312453	0.08 ~ 1GHz	Oct. 20, 2014	RS (RS01-HY)
INTEGRATED MEASUREMENT SYSTEM	ROHDE& SCHWARZ	IMS	100007	9kHz ~ 3GHz	Mar. 26, 2014	RS (RS01-HY)
NRP-Z91 POWER SENSOR 6GHZ	ROHDE& SCHWARZ	NRP-Z91 1168.8004.02	100095	9kHz ~ 3GHz	Mar. 26, 2014	RS (RS01-HY)
Antenna	FRANKONIA	BTA-L	02002L	26MHz ~ 1GHz	May 05, 2014	RS (RS01-HY)
Probe	ETS-LINDGREN	HI-6005	00052473	0.1MHz ~ 5GHz	Feb. 05, 2014	RS (RS01-HY)
EFT Generator	TESEQ	FTM3425	0180	0 ~ 4kV	Jan. 02, 2014	EFT (EX01-HY)
SURGE Generator	TESEQ	CWN 3650	0429	0 ~ 6 kV/2Ω 0~ 6 kV/12Ω	Jan. 02, 2014	SURGE (EX01-HY)
Conducted Immunity Test System	SCHAFFNER	NSG2070	1092	100KHz~250MHz FM 1KHZ 80%	Jun. 24, 2014	CS (CS03-HY)
Attenuator	EM TEST	ATT06 MHz 06	0004166A	150kHz~230MHz	Jun. 23, 2014	CS (CS03-HY)
Coupling and Decoupling Network	SCHAFFNER	CDN M016	16676	150kHz ~ 230MHz	Jun. 19, 2014	CS (CS03-HY)
Magnetic field Immunity Loop	FCC (KEYTEK)	F-1000-4-8-G-125 A	03007	30A//CONTINUOUS 100A/2Hrs 230A/30SEC	Oct. 20, 2014	PFMF (CS03-HY)
Magnetic Generator	FCC (KEYTEK)	F-1000-4-8/9/10-L- 1M	03003	30A//CONTINUOUS 100A/2Hrs 230A/30SEC	Oct. 20, 2014	PFMF (CS03-HY)
DIP Generator	TESEQ	VAR 3005-S16	0804	230VA/50Hz/60Hz 0%Open/5S 0%Short/5S 40%0.10S 70%/0.01S	Jan. 02, 2014	DIP (EX01-HY)
Harmonic/Flicker Test System	SCHAFFNER	CCN1000-1	72471	4000VA 16A PEAK	Jan. 29, 2014	Harmonics, Flicker (EX01-HY)

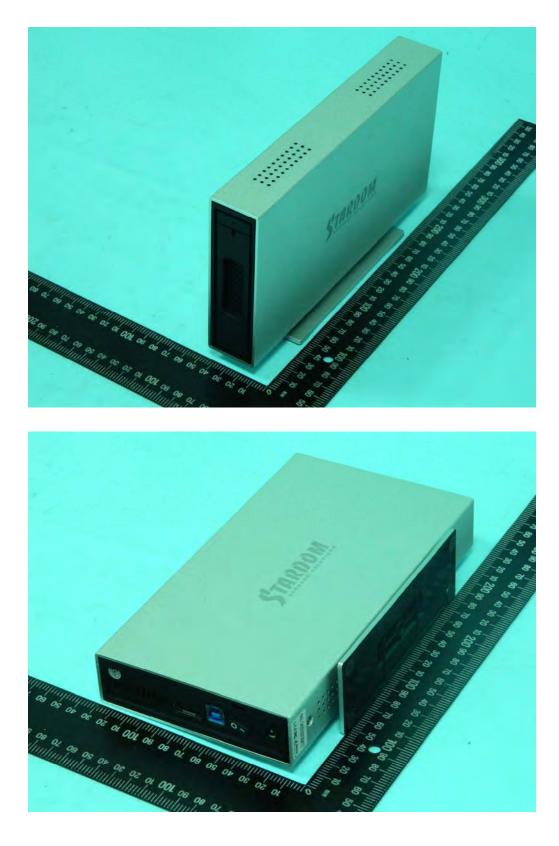
* Calibration Interval of instruments listed above is one year.

APPENDIX A. Photographs of EUT

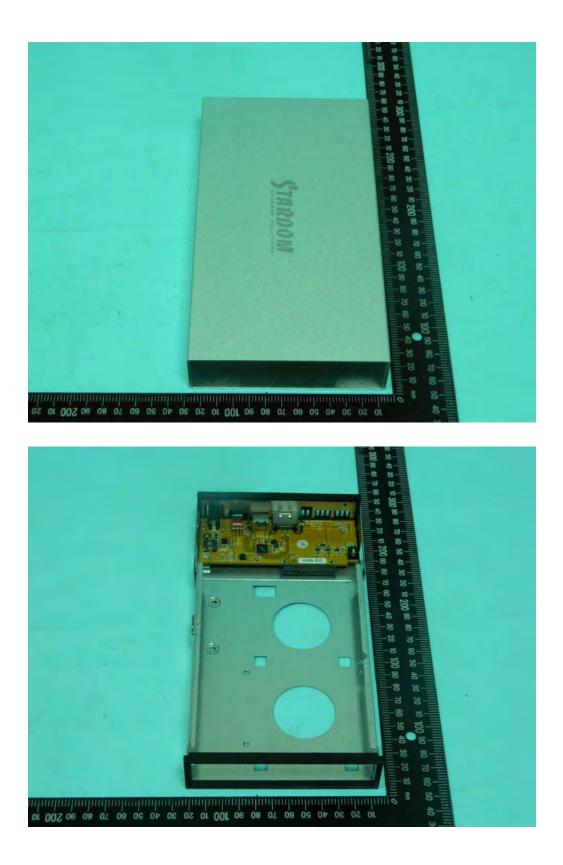

GT1670-SB3

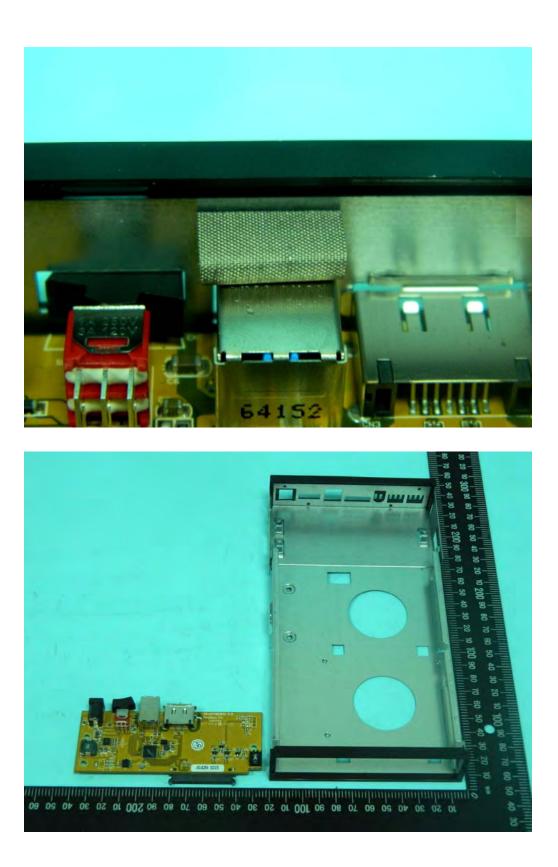

GT1660-SB3

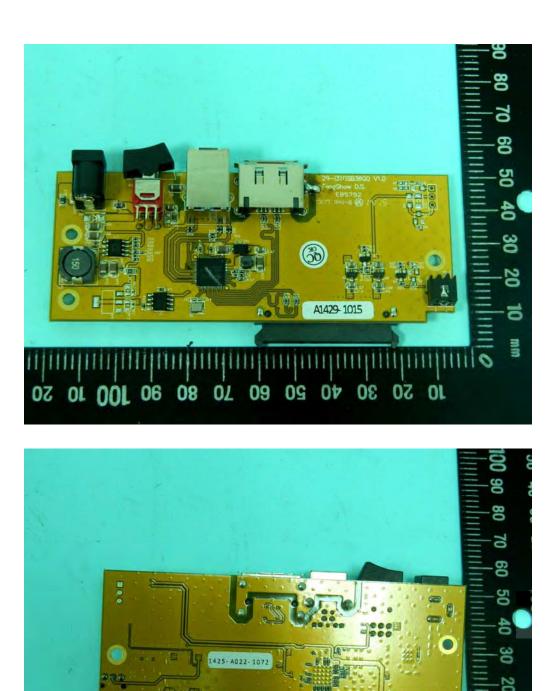




i310-SB3



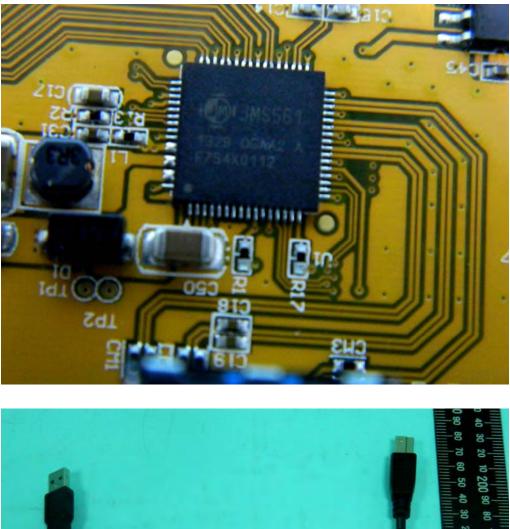




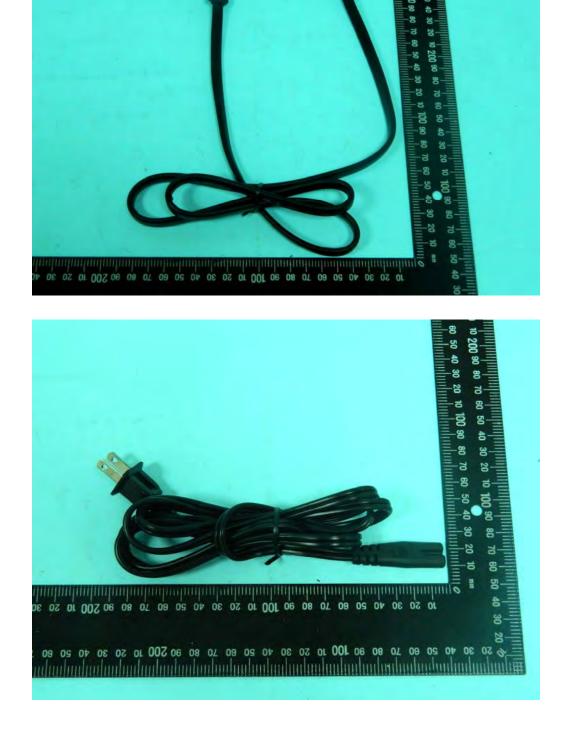
05 02 01 001 06 08 07 09

10 50

90


07

30


U 10

0

99 8

